Screen Shot 2019-08-12 at 12.21.22 PM.png

Biomolecular Sensors

Advances in genomic and proteomic methods now allow classification of disease based on molecular profiling. The detection of a molecular analytes and use of this type of information for disease diagnosis requires methods with superior sensitivity and specificity, along with high-throughput. We are developing new analytical methods with these properties that will permit the direct readout of nucleic acid sequences and protein biomarkers. Chip-based sensors made from nanomaterials play an important role in this effort, as detection sensitivity is greatly enhanced when measurements are performed at the nanoscale. We have also recently developed devices that capture rare cells with high efficiency.  Our aim is to generate detection systems applicable to the diagnosis of cancer, infectious disease and other disease states.

Featured publications:

De Luna, P.; Mahshid, S. S.; Das, J.; Luan, B.; Sargent, E. H.; Kelley, S. O.; Zhou, R. High-Curvature Nanostructuring Enhances Probe Display for Biomolecular Detection.
Nano Lett. 2017, 17 (2), 1289–1295. https://doi.org/10.1021/acs.nanolett.6b05153.

Das, J.; Ivanov, I.; Sargent, E. H.; Kelley, S. O. DNA Clutch Probes for Circulating Tumor DNA Analysis.
J. Am. Chem. Soc. 2016, 138 (34), 11009–11016. https://doi.org/10.1021/jacs.6b05679.

Das, J.; Ivanov, I.; Montermini, L.; Rak, J.; Sargent, E. H.; Kelley, S. O. An Electrochemical Clamp Assay for Direct, Rapid Analysis of Circulating Nucleic Acids in Serum.
Nature Chemistry 2015, 7 (7), 569–575. https://doi.org/10.1038/nchem.2270.

Sage, A. T.; Besant, J. D.; Mahmoudian, L.; Poudineh, M.; Bai, X.; Zamel, R.; Hsin, M.; Sargent, E. H.; Cypel, M.; Liu, M.; et al. Fractal Circuit Sensors Enable Rapid Quantification of Biomarkers for Donor Lung Assessment for Transplantation.
Science Adv. 2015, 1 (7), e1500417.https://doi.org/10.1126/sciadv.1500417.

Das, J.; Cederquist, K. B.; Zaragoza, A. A.; Lee, P. E.; Sargent, E. H.; Kelley, S. O. An Ultrasensitive Universal Detector Based on Neutralizer Displacement.
Nature Chemistry 2012, 4 (8), 642–648. https://doi.org/10.1038/nchem.1367.

Soleymani, L.; Fang, Z.; Lam, B.; Bin, X.; Vasilyeva, E.; Ross, A. J.; Sargent, E. H.; Kelley, S. O. Hierarchical Nanotextured Microelectrodes Overcome the Molecular Transport Barrier to Achieve Rapid, Direct Bacterial Detection. ACS Nano 2011, 5 (4), 3360–3366. https://doi.org/10.1021/nn200586s.

Vasilyeva, E.; Lam, B.; Fang, Z.; Minden, M. D.; Sargent, E. H.; Kelley, S. O. Direct Genetic Analysis of Ten Cancer Cells: Tuning Sensor Structure and Molecular Probe Design for Efficient MRNA Capture.
Angew. Chem. Intl. Ed. 2011, 50 (18), 4137–4141. https://doi.org/10.1002/anie.201006793.

Soleymani, L.; Fang, Z.; Sargent, E. H.; Kelley, S. O. Programming the Detection Limits of Biosensors through Controlled Nanostructuring.
Nature Nanotechnol. 2009, 4 (12), 844–848. https://doi.org/10.1038/nnano.2009.276.

Soleymani, L.; Fang, Z.; Sun, X.; Yang, H.; Taft, B. J.; Sargent, E. H.; Kelley, S. O. Nanostructuring of Patterned Microelectrodes to Enhance the Sensitivity of Electrochemical Nucleic Acids Detection.
Angew. Chem. Intl. Ed. 2009, 48 (45), 8457–8460. https://doi.org/10.1002/anie.200902439.

Yang, H.; Hui, A.; Pampalakis, G.; Soleymani, L.; Liu, F. F.; Sargent, E. H.; Kelley, S. O. Direct, Electronic MicroRNA Detection for the Rapid Determination of Differential Expression Profiles.
Angew. Chem. Intl. Ed. 2009, 48 (45), 8461–8464. https://doi.org/10.1002/anie.200902577.

Back